题目内容
求数列的前n项和:1+1,
+4,
+7,…,
+3n-2,….
1 |
a |
1 |
a2 |
1 |
an-1 |
设Sn=(1+1)+(
+4)+(
+7)+…+(
+3n-2)
将其每一项拆开再重新组合得Sn=(1+
+
+…+
)+(1+4+7+…+3n-2)
当a=1时,Sn=n+
=
当a≠1时,Sn=
+
=
+
1 |
a |
1 |
a2 |
1 |
an-1 |
将其每一项拆开再重新组合得Sn=(1+
1 |
a |
1 |
a2 |
1 |
an-1 |
当a=1时,Sn=n+
(3n-1)n |
2 |
(3n+1)n |
2 |
当a≠1时,Sn=
1-
| ||
1-
|
(3n-1)n |
2 |
a-a1-n |
a-1 |
(3n-1)n |
2 |
练习册系列答案
相关题目