题目内容

(附加题)
(1)自圆O外一点P引切线与圆切于点A,M为PA中点,过M引割线交圆于B,C两点.
求证:∠MCP=∠MPB.
(2)在平面直角坐标系xOy中,已知四边形ABCD的四个顶点A(0,1),B(2,1),C(2,3),D(0,2),经矩阵表示的变换作用后,四边形ABCD变为四边形A1B1C1D1,问:四边形ABCD与四边形A1B1C1D1的面积是否相等?试证明你的结论.
(3)已知A是曲线ρ=12sinθ上的动点,B是曲线上的动点,试求AB的最大值.
(4)设p是△ABC内的一点,x,y,z是p到三边a,b,c的距离,R是△ABC外接圆的半径,证明
(1)证明:∵AM切圆于点A,
∴AM2=MBMC
又∵M为PA中点,AM=MP,
∴MP2=MBMC,

∵∠BMP=∠PMC,
∴△BMP∽△PMC,
∴∠MCP=∠MPB.
(2)四个顶点A(0,1),B(2,1),C(2,3),D(0,2),
经矩阵表示的变换作用后,
四边形ABCD变为四边形A1B1C1D1顶点坐标为
A1(0,1),B1(2,2k+1),C1(2,2k+3),D1(0,2),
四边形A1B1C1D1仍为梯形,且上、下底及高都不变,故面积相等;
(3)曲线ρ=12sinθ化为直角坐标方程为 x2+(y﹣6)2=36,
表示以(0,6)为圆心,以6为半径的圆.
曲线化为直角坐标方程为
x2+y2=6x+6y,即 (x﹣32+(y﹣3)2=36,
表示以(3,3 )为圆心,以6为半径的圆.
两圆的圆心距的平方为 (0﹣32+(6﹣3)2 =36,
故两圆相交,线段AB长的最大值为6+r+r'=18.
(4)连接P与三角形的三个顶点,分成的三个小三角形面积的和等于大三角形,
(ax+by+cz)=S,
∴ax+by+cz=2S=
=×+×+×
×[++]
=×()=×
=×
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网