ÌâÄ¿ÄÚÈÝ
ÉèÊýÁÐ{xn}µÄËùÓÐÏÊDz»µÈÓÚ1µÄÕýÊý,Ç°nÏîºÍΪSn,ÒÑÖªµãPn(xn,Sn)ÔÚÖ±Ïßy=kx+bÉÏ(ÆäÖÐ,³£Êýk¡Ù0,ÇÒk¡Ù1),ÓÖyn=log0.5xn.(1)ÇóÖ¤:ÊýÁÐ{xn}ÊǵȱÈÊýÁÐ;
(2)Èç¹ûyn=18-3n,ÇóʵÊýk,bµÄÖµ;
(3)Èç¹û´æÔÚt,s¡ÊN*,s¡Ùt£¬Ê¹µÃµã£¨t,ys£©ºÍ£¨s,yt£©¶¼ÔÚÖ±Ïßy=2x+1ÉÏ,ÊÔÅжÏ,ÊÇ·ñ´æÔÚ×ÔÈ»ÊýM,µ±n£¾Mʱ,xn£¾1ºã³ÉÁ¢?Èô´æÔÚ,Çó³öMµÄ×îСֵ,Èô²»´æÔÚ,Çë˵Ã÷ÀíÓÉ.
½â:(1)Ö¤Ã÷£º¡ßµãPn,Pn+1¶¼ÔÚÖ±Ïßy=kx+bÉÏ,¡à=k,µÃ(k-1)xn+1=kxn.
¡ß³£Êýk¡Ù0,ÇÒk¡Ù1,¡à(·ÇÁã³£Êý).¡àÊýÁÐ{xn}ÊǵȱÈÊýÁÐ.
(2)ÓÉyn=log0.5xn,µÃxn==8n-6=8-58n-1,¡à=8,µÃk=.
ÓÉPnÔÚÖ±ÏßÉÏ,µÃSn=kxn+b,Áîn=1µÃb=S1x1=x1=.
(3)xn£¾1ºã³ÉÁ¢µÈ¼ÛÓÚyn£¼0,
¡ß´æÔÚt,s¡ÊN£¬Ê¹µÃ(t,ys)ºÍ£¨s,yt)¶¼ÔÚy=2x+1ÉÏ,¡àys=2t+1,¢Ù
yt=2s+1,¢Ú
¢Ù-¢Ú,µÃys-yt=2(t-s).Ò×Ö¤{yn}ÊǵȲîÊýÁÐ,ÉèÆ乫²îΪd,ÔòÓÐys-yt=(s-t)d,
¡ßs¡Ùt,¡àd=-2£¼0.¢Ù+¢Ú,µÃys+yt=2(t+s)+2,
ÓÖys+yt=y1+(s-1)(-2)+y1+(t-1)(-2)=2y1-2(s+t)+4,
ÓÉ2y1-2(s+t)+4=2(t+s)+2,µÃy1=2(t+s)-1£¾0,
¼´ÊýÁÐ{yn}ÊÇÊ×ÏîΪÕý,¹«²îΪ¸ºµÄµÈ²îÊýÁÐ,
¡àÒ»¶¨´æÔÚÒ»¸ö×îС×ÔÈ»ÊýM,ʹ
¼´½âµÃt+s£¼M¡Üt+s+.¡ßM¡ÊN,¡àM=t+s,
¼´´æÔÚ×ÔÈ»ÊýM,Æä×îСֵΪt+s,ʹµÃµ±n£¾Mʱ,xn£¾1ºã³ÉÁ¢.