题目内容
计算:(1)设a,b∈R,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104639580923273/SYS201311031046395809232017_ST/0.png)
(2)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有m种.求m的值.
【答案】分析:(1)由题意可对复数代数式
分子与分母都乘以1+2i,再进行化简计算,再由复数相等的条件求出a和b的值,即可得答案;
(2)根据题意需要分三类计算:①4个偶数;②2个奇数,2个偶数;③4个奇数,再由组合公式求解即可.
解答:解:(1)∵a+bi=
,
∴a=5,b=3,a+b=8.;
(2)根据题意偶数为2、4、6、8,奇数为1、3、5、7、9,
需要分三类计算:①4个偶数;②2个奇数,2个偶数;③4个奇数,
则符合题意的取法共有:
m=C
C
+C
C
+C
C
=1+60+5=66(种)
点评:本题考查复数代数形式的乘除运算和组合公式,解题的关键是分子分母都乘以分母的共轭复数和明确进行分类,复数的四则运算是复数考查的重要内容,要熟练掌握.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104639580923273/SYS201311031046395809232017_DA/0.png)
(2)根据题意需要分三类计算:①4个偶数;②2个奇数,2个偶数;③4个奇数,再由组合公式求解即可.
解答:解:(1)∵a+bi=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104639580923273/SYS201311031046395809232017_DA/1.png)
∴a=5,b=3,a+b=8.;
(2)根据题意偶数为2、4、6、8,奇数为1、3、5、7、9,
需要分三类计算:①4个偶数;②2个奇数,2个偶数;③4个奇数,
则符合题意的取法共有:
m=C
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104639580923273/SYS201311031046395809232017_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104639580923273/SYS201311031046395809232017_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104639580923273/SYS201311031046395809232017_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104639580923273/SYS201311031046395809232017_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104639580923273/SYS201311031046395809232017_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104639580923273/SYS201311031046395809232017_DA/7.png)
点评:本题考查复数代数形式的乘除运算和组合公式,解题的关键是分子分母都乘以分母的共轭复数和明确进行分类,复数的四则运算是复数考查的重要内容,要熟练掌握.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目