题目内容

一条直线经过P(3,2),并且分别满足下列条件,求直线方程.
(1)倾斜角是直线x-4y+3=0的倾斜角的2倍;
(2)夹在两坐标间的线段被P分成1:2;
(3)与x轴,y轴正半轴交于A、B两点,且△AOB的面积最小.
分析:(1)先求得直线x-4y+3=0的倾斜角,再用二倍角的正切求得所求直线的斜率;
(2)先设出直线方程,再求出与坐标轴的交点坐标,用两点间距离公式表示出两线段求得;
(3)设出直线方程,分别求得在x轴,y轴正半轴的截距,建立三角形面积模型,再求最值所在状态.
解答:解:(1)直线x-4y+3=0的倾斜角是α=arctan
1
4
,∴所求直线的倾斜角β=2arctan
1
4
,∴其斜率k=tan(2arctan
1
4
)=
8
15

∴所求直线方程是:y-2=
8
15
(x-3)即:8x-15y+6=0
(2)设直线方程为y-2=k(x-3)
令x=0得,y=2-3k;与y轴交点坐标A(0,2-3k)
令y=0得,x=3-
2
k
与x轴交点坐标B(3-
2
k
,0)
①若|PB|=2|PA|
9+(2-2+3k)2
=2
(3-3+
2
k
)
2
+4

解得:k=-
1
3
1
3
(舍),
直线方程是x+3y-9=0,
②若|PA|=2|PB|,同理可得直线方程为4x+3y-18=0
故直线方程是4x+3y-18=0或x+3y-9=0
(3)设直线方程为
x
a
+
y
b
=1

1=
3
a
+
2
b
≥2
3
a
2
b
=2
6
ab

得ab≥24
S△min=
ab
2
=12
3
a
=
2
b
,ab=24

解得a=6,b=4
所以所求直线方程为
x
6
+
y
4
=1
点评:本题主要考查直线方程的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网