题目内容
用表示集合S中的元素的个数,设为集合,称为有序三元组.如果集合满足,且,则称有序三元组为最小相交.由集合的子集构成的所有有序三元组中,最小相交的有序三元组的个数为 .
96
解析试题分析:三个集合不可能有一元集,否则不能满足,又因为中只有4个元素,则中不可能有两个集合都有3个元素,否则不能满足,但中可以三个集合都含有2个元素,也可能是一个集合有3个元素,其它两个集合含有2个元素,情形如下:
如三个集合都含有2个元素这种情形,,,这种类型有种可能,另外第4个元素可任意加入上述4种可能中的每一个集合,又形成不同的情形,这样就又有种,于是就共有了种情形,在每一种情形中,它们的顺序可以打乱,每种可形成个,因此共有个有序三元组.
考点:集合的交集.
练习册系列答案
相关题目
满足条件{1,2,3}M{1,2,3,4,5,6}的集合M的个数是( )
A.8 | B.7 | C.6 | D.5 |