题目内容
(本题12分)设二次函数,若的解集为,函数,(1)求与的值;(2)
(1) (2)不等式的解集
解析
(本题满分13分)某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品(百台),其总成本为(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为2万元(总成本=固定成本+生产成本).销售收入(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出函数的解析式;(2)写出利润函数的解析式(利润=销售收入—总成本);(3)工厂生产多少台产品时,可使盈利最多?
(本小题满分12分) 已知函数(且)的图象过点,点关于直线的对称点在的图象上.(Ⅰ)求函数的解析式;(Ⅱ)令,求的最小值及取得最小值时x的值.
(16分)已知二次函数的图像关于直线对称,且在轴上截得的线段长为2.若的最小值为,求:(1)函数的解析式;(2)函数在上的最小值.
(本题满分12分)某风景区有40辆自行车供游客租赁使用,管理这些自行车的费用是每日72元。根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆。为了便于结算,每辆自行车的日租金(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得)。(1)求函数的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?
首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似的表示为:,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(Ⅰ)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(Ⅱ)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?
设函数(、),若,且对任意实数()不等式0恒成立.(Ⅰ)求实数、的值;(Ⅱ)当[-2,2]时,是单调函数,求实数的取值范围.
求函数f(x)= 的值域 .
15分)经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间(天)的函数,且销售量近似满足函数(件),价格近似满足函数(元)。(1)试写出该种商品的日销售额函数表达式;(2)求该种商品的日销售额的最大值与最小值。