题目内容

已知f(x)=
px2+2
3x+q
是奇函数,且f(2)=
5
3

(1)求实数p和q的值.
(2)求f(x)的单调区间.
分析:(1)由及函数的定义f(-x)=-f(x)恒成立,可得p和q的一个关系式,由f(2)=
5
3
再得p和q的一个关系式,联立解方程组即可求出实数p和q的值;
(2)可直接利用导数进行判断.先求导,令f′(x)>0即得f(x)的增区间,令f′(x)<0即得f(x)的减区间.
解答:解;(1)f(x)=
px2+2
3x+q
是奇函数,则f(-x)=-f(x)恒成立,
f(-x)=
px2+2
-3x+q
=-
px2+2
3x+q
=
px2+2
-3x-q
,所以q=0,又f(2)=
5
3
,可得p=2,
所以p=2,q=0
(2)由(1)知f(x)=
2x2+2
3x
2
3
x+
2
3x
f′(x)=
2
3
-
2
3x2

令f′(x)>0得x<-1或x>1,令f′(x)<0得-1<x<1,因为x≠0,
所以f(x)的增区间为(-∞,-1),(1,+∞)
减区间为(-1,0),(0,1)
点评:本题考查函数的单调性的判断和就行的应用,属基本题型的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网