题目内容
设全集U={1,2,3,4,5,6,7,8,9},?U(A∪B)={1,3},?UA∩B={2,4},则集合B=( )
分析:由U={1,2,3,4,5,6,7,8,9},?U(A∪B)={1,3},直接求出A∪B={2,4,5,6,7,8,9},然后结合?UA∩B={2,4},对选项一一验证即可.
解答:解:因为U={1,2,3,4,5,6,7,8,9},?U(A∪B)={1,3},
所以A∪B={2,4,5,6,7,8,9},
又?UA∩B={2,4},
A:若B={1,2,3,4},则A∪B={2,4,5,6,7,8,9}不可能,故A错;
B:若B={1,2,3,4,5},则A∪B={2,4,5,6,7,8,9}不可能,故B错;
C:若B={5,6,7,8,9},则A∪B={2,4,5,6,7,8,9}成立,故C正确;
D:若B={7,8,9},则?UA∩B={2,4}不成立,故D错.
故选C.
所以A∪B={2,4,5,6,7,8,9},
又?UA∩B={2,4},
A:若B={1,2,3,4},则A∪B={2,4,5,6,7,8,9}不可能,故A错;
B:若B={1,2,3,4,5},则A∪B={2,4,5,6,7,8,9}不可能,故B错;
C:若B={5,6,7,8,9},则A∪B={2,4,5,6,7,8,9}成立,故C正确;
D:若B={7,8,9},则?UA∩B={2,4}不成立,故D错.
故选C.
点评:本题是基础题,考查集合的基本运算,补集、交集的求法.
练习册系列答案
相关题目