题目内容
【解析】令.
答案:
(08年上海卷理)设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lg x,则满足f(x)>0的x的取值范围是 .
(08年上海卷理)方程x2+x-1=0的解可视为函数y=x+的图像与函数y=的图像交点的横坐标,若x4+ax-4=0的各个实根x1,x2,…,xk (k≤4)所对应的点(xi ,)(i=1,2,…,k)均在直线y=x的同侧,则实数a的取值范围是 .
(08年上海卷理)(3’+5’+8’)设P(a,b)(b≠0)是平面直角坐标系xOy中的点,l是经过原点与点(1,b)的直线,记Q是直线l与抛物线x2=2py(p≠0)的异于原点的交点
⑴ 若a=1,b=2,p=2,求点Q的坐标
⑵ 若点P(a,b)(ab≠0)在椭圆上,,
求证:点Q落在双曲线4x2-4y2=1上
⑶ 若动点P(a,b)满足ab≠0,,若点Q始终落在一条关于x轴对称的抛物线上,试问动点P的轨迹落在哪种二次曲线上,并说明理由