题目内容

(本题满分分) 某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.

(I)假设n=2,求第一大块地都种植品种甲的概率;

(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:

品种甲

403

397

390

404

388

400

412

406

品种乙

419

403

412

418

408

423

400

413

分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?

附:样本数据的的样本方差,其中为样本平均数.

 

 

【答案】

解:(I)设第一大块地中的两小块地编号为1,2,第二大块地中的两小块地编号为3,4,

令事件A=“第一大块地都种品种甲”.

从4小块地中任选2小块地种植品种甲的基本事件共6个;

(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).

而事件A包含1个基本事件:(1,2).

所以                               ………………6分

   (II)品种甲的每公顷产量的样本平均数和样本方差分别为:

                                              ………………8分

品种乙的每公顷产量的样本平均数和样本方差分别为:

                                             ………………10分

由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.

………………12分

 

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网