题目内容

1.将一枚骰子先后抛掷两次得到的点数依次记为a,b,则直线ax+by=0与圆(x-2)2+y2=2无公共点的概率为(  )
A.$\frac{1}{6}$B.$\frac{5}{12}$C.$\frac{7}{12}$D.$\frac{2}{3}$

分析 由题意知本题是一个古典概型,试验发生包含的事件数是36,求出满足条件的事件是直线ax+by=0与圆(x-2)2+y2=2无公共点的基本事件个数,代入古典概型概率公式得到结果.

解答 解:将一枚骰子先后抛掷两次得到的点数依次记为a,b,基本事件总数是36种,
∵直线ax+by=0与圆(x-2)2+y2=2无公共点,则有 $\frac{{|{2a}|}}{{\sqrt{{a^2}+{b^2}}}}>\sqrt{2}⇒a>b$,
∴满足该条件的基本事件有15种,
故所求概率为P=$\frac{15}{36}$=$\frac{5}{12}$.
故选:B

点评 本题考查古典概型,考查对立事件的概率,考查简单直线与圆的位置关系,是一个综合题,本题解题的难点不是古典概型,而是题目中出现的其他的知识点

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网