题目内容
1.将一枚骰子先后抛掷两次得到的点数依次记为a,b,则直线ax+by=0与圆(x-2)2+y2=2无公共点的概率为( )A. | $\frac{1}{6}$ | B. | $\frac{5}{12}$ | C. | $\frac{7}{12}$ | D. | $\frac{2}{3}$ |
分析 由题意知本题是一个古典概型,试验发生包含的事件数是36,求出满足条件的事件是直线ax+by=0与圆(x-2)2+y2=2无公共点的基本事件个数,代入古典概型概率公式得到结果.
解答 解:将一枚骰子先后抛掷两次得到的点数依次记为a,b,基本事件总数是36种,
∵直线ax+by=0与圆(x-2)2+y2=2无公共点,则有 $\frac{{|{2a}|}}{{\sqrt{{a^2}+{b^2}}}}>\sqrt{2}⇒a>b$,
∴满足该条件的基本事件有15种,
故所求概率为P=$\frac{15}{36}$=$\frac{5}{12}$.
故选:B
点评 本题考查古典概型,考查对立事件的概率,考查简单直线与圆的位置关系,是一个综合题,本题解题的难点不是古典概型,而是题目中出现的其他的知识点
练习册系列答案
相关题目
11.已知函数f(x)=$\left\{\begin{array}{l}cos(x-\frac{π}{2}),x∈[0,π]\\{log_{2015}}\frac{x}{π},x∈(π,+∞)\end{array}$,若有三个不同的实数a,b,c,使得f(a)=f(b)=f(c),则a+b+c的取值范围为( )
A. | (2π,2016π) | B. | ($\frac{3π}{2},\frac{4031π}{2}$) | C. | (2π,2015π) | D. | (π,2015π) |
12.为普及高中生安全逃生知识与安全防护能力,某学校高一年级举办了高中生安全知识与安全逃生能力竞赛.该竞赛分为预赛和决赛两个阶段,预赛为笔试,决赛为技能比赛.先将所有参赛选手参加笔试的成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.
(Ⅰ)求出上表中的x,y,z,s,p的值;
(Ⅱ)按规定,预赛成绩不低于90分的选手参加决赛,若高一•二班有甲、乙两名同学取得决赛资格.现从中选出2人担任组长,求至少有一人来自高一•二班的概率.
分数(分数段) | 频数(人数) | 频率 |
[60,70) | 9 | x |
[70,80) | y | 0.38 |
[80,90) | 16 | 0.32 |
[90,100) | z | s |
合 计 | p | 1 |
(Ⅱ)按规定,预赛成绩不低于90分的选手参加决赛,若高一•二班有甲、乙两名同学取得决赛资格.现从中选出2人担任组长,求至少有一人来自高一•二班的概率.
13.设x,y满足约束条件$\left\{\begin{array}{l}x+2y-4≥0\\ 3x+y-3≥0\end{array}\right.$,若$\overrightarrow a=(y,x+m)$,$\overrightarrow b=(y,x-m)$,且$\overrightarrow a⊥\overrightarrow b$,则正实数m的最小值为( )
A. | $\frac{{\sqrt{85}}}{5}$ | B. | $\frac{{4\sqrt{5}}}{5}$ | C. | $\frac{{3\sqrt{10}}}{10}$ | D. | $\frac{16}{5}$ |