题目内容
已知函f(x)=ex-x (e为自然对数的底数).(1)求f(x)的最小值;
(2)不等式f(x)>ax的解集为P,若M={x|
1 | 2 |
(3)已知n∈N+,且Sn=∫n0f(x)dx,是否存在等差数列{an}和首项为f(I)公比大于0的等比数列{bn},使得a1+a2+…+an+b1+b2+…bn=Sn?若存在,请求出数列{an}、{bn}的通项公式.若不存在,请说明理由.
分析:(1)∵函数f(x)=ex-x,对f(x)求导,令f′(x)=0,得x=0,从而求得函数f(x)的最小值;
(2)由M={x|
≤x≤2}且M∩P≠∅,得f(x)>ax在区间[
,1]有解,即ex-x>ax,可得a<
-1在[
,2]上有解,故令g(x)=
-1,x∈[
,2],求导得,g′(x)=
,利用导数可求得g(x)在[
,2]上的最大值为
g(2),从而得a的取值范围;
(3)设存在公差为d的等差数列{an}和公比为q(q>0),首项为f(1)的等比数列{bn},使得a1+a2+…+an+b1+b2+…bn=Sn,则由sn=∫ONf(x)dx,得sn,由b1=f(1)=e-1,且a1+b1=s1,可得a1,又n≥2时,an+bn=sn-sn-1=en-1(e-1)-n+
故n=2,3时,有
可解得q=e,从而得d=-1,所以求得an,bn;得到满足条件的数列{an},{bn}.
(2)由M={x|
1 |
2 |
1 |
2 |
ex |
x |
1 |
2 |
ex |
x |
1 |
2 |
(x-1)ex |
x2 |
1 |
2 |
g(2),从而得a的取值范围;
(3)设存在公差为d的等差数列{an}和公比为q(q>0),首项为f(1)的等比数列{bn},使得a1+a2+…+an+b1+b2+…bn=Sn,则由sn=∫ONf(x)dx,得sn,由b1=f(1)=e-1,且a1+b1=s1,可得a1,又n≥2时,an+bn=sn-sn-1=en-1(e-1)-n+
1 |
2 |
故n=2,3时,有
|
解答:解:(1)∵函数f(x)=ex-x,∴f′(x)=ex-1;由f′(x)=0,得x=0,当x>0时,f′(x)>0,函数f(x)在(0,+∞)上单调递增;当x<0时,f′(x)<0,函数f(x)在(-∞,0)上单调递减;∴函数f(x)的最小值为f(0)=1.
(2)∵M∩P≠∅,∴f(x)>ax在区间[
,1]有解,由f(x)>ax,得ex-x>ax,即a<
-1在[
,2]上有解;
令g(x)=
-1,x∈[
,2],则g′(x)=
,∴g(x)在[
,1]上单调递减,在[1,2]上单调递增;
又g(
)=2
-1,g(2)=
-1,且g(2)>g(
),∴g(x)的最大值为g(2)=
-1,∴a<
-1.
(3)设存在公差为d的等差数列{an}和公比为q(q>0),首项为f(1)的等比数列{bn},
使a1+a2+…+an+b1+b2+…+bn=Sn
∵Sn=
f(x)dx=
(ex-x)dx=(ex-
x2)|_n=en-
n2-1;且b1=f(1)=e-1,
∴a1+b1=S1即a1+e-1=e-
;∴a1=-
,又n≥2时,an+bn=sn-sn-1=en-1(e-1)-n+
;
故n=2,3时,有
;
②-①×2得,q2-2q=e2-2e,解得q=e,或q=2-e(舍),故q=e,d=-1;
此时an=-
+(n-1)(-1)=
-n,bn=(e-1)en-1且an+bn=(e-1)en-1+
-n=Sn-Sn-1;
∴存在满足条件的数列{an},{bn}满足题意.
(2)∵M∩P≠∅,∴f(x)>ax在区间[
1 |
2 |
ex |
x |
1 |
2 |
令g(x)=
ex |
x |
1 |
2 |
(x-1)ex |
x2 |
1 |
2 |
又g(
1 |
2 |
e |
e2 |
2 |
1 |
2 |
e2 |
2 |
e2 |
2 |
(3)设存在公差为d的等差数列{an}和公比为q(q>0),首项为f(1)的等比数列{bn},
使a1+a2+…+an+b1+b2+…+bn=Sn
∵Sn=
∫ | n 0 |
∫ | n 0 |
1 |
2 |
1 |
2 |
∴a1+b1=S1即a1+e-1=e-
3 |
2 |
1 |
2 |
1 |
2 |
故n=2,3时,有
|
②-①×2得,q2-2q=e2-2e,解得q=e,或q=2-e(舍),故q=e,d=-1;
此时an=-
1 |
2 |
1 |
2 |
1 |
2 |
∴存在满足条件的数列{an},{bn}满足题意.
点评:本题综合考查了利用导数求函数的最值问题,集合关系,定积分求值问题,函数与数列的综合应用问题,属于较难的问题;解题时需要认真分析,细心解答,避免出错.
练习册系列答案
相关题目