题目内容

14.已知f(x)=$\left\{\begin{array}{l}{2{e}^{x-1},}&{x≤1}\\{lo{g}_{\frac{1}{2}}\frac{x}{4},}&{x>1}\end{array}\right.$,且方程f(x)=c恰好有两个不同的根,则实数c的取值范围为(0,2).

分析 作函数f(x)=$\left\{\begin{array}{l}{2{e}^{x-1},}&{x≤1}\\{lo{g}_{\frac{1}{2}}\frac{x}{4},}&{x>1}\end{array}\right.$的图象,结合图象求解即可.

解答 解:作函数f(x)=$\left\{\begin{array}{l}{2{e}^{x-1},}&{x≤1}\\{lo{g}_{\frac{1}{2}}\frac{x}{4},}&{x>1}\end{array}\right.$的图象如下,

结合图象可得,
∵方程f(x)=c恰好有两个不同的根,
∴0<c<2;
故答案为:(0,2).

点评 本题考查了函数的图象的作法与数形结合的思想应用及方程的根与函数的图象的关系应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网