ÌâÄ¿ÄÚÈÝ

14£®ÒÑÖªÍÖÔ²C1£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬ËüµÄ½¹µãÓëÅ×ÎïÏßC2£ºx2=4yµÄ½¹µã¼äµÄ¾àÀëΪ2£®
£¨1£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨2£©ÉèC1ÓëC2ÔÚµÚÒ»ÏóÏ޵Ľ»µãΪA£¬¹ýAбÂÊΪk£¨k£¾0£©µÄÖ±Ïßl1ÓëC1µÄÁíÒ»¸ö½»µãΪB£¬¹ýµãAÓël1´¹Ö±µÄÖ±Ïßl2ÓëC2µÄÁíÒ»¸ö½»µãΪC£¬Éèm=$\frac{|\overrightarrow{AB}|}{|\overrightarrow{AC}|}$£¬ÊÔÇómµÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨1£©ÓÉÀëÐÄÂʹ«Ê½ºÍ½¹µã×ø±ê¿ÉµÃc£¬a£¬ÔÙÓÉÍÖÔ²µÄa£¬b£¬cµÄ¹Øϵ£¬¿ÉµÃb£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©Éè³öÖ±ÏßABµÄ·½³Ì£¬ÁªÁ¢ÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬ÇóµÃ|AB|£¬ÔÙÉèÖ±ÏßACµÄ·½³Ì£¬ÁªÁ¢Å×ÎïÏß·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬¿ÉµÃ|AC|£¬ÔÙÇómµÄ·¶Î§£¬¼´¿ÉµÃµ½£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬
Å×ÎïÏßC2£ºx2=4yµÄ½¹µãΪ£¨0£¬1£©£¬
ÍÖÔ²µÄ½¹µãΪ£¨¡Àc£¬0£©£¬
¼´ÓÐ$\sqrt{1+{c}^{2}}$=2£¬½âµÃc=$\sqrt{3}$£¬a=$\sqrt{6}$£¬
b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{3}$£¬
¼´ÓÐÍÖÔ²C1µÄ·½³ÌΪ$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{3}$=1£»
£¨2£©ÁªÁ¢ÍÖÔ²·½³ÌºÍÅ×ÎïÏß·½³Ì£¬½âµÃA£¨2£¬1£©£¬
ÓÉÌâÒâµÃÖ±ÏßABµÄ·½³ÌΪy-1=k£¨x-2£©£¬ÁªÁ¢ÍÖÔ²·½³ÌÏûÈ¥y£¬
µÃ£¨2k2+1£©x2+4k£¨1-2k£©x+2£¨1-2k£©2-6=0£¬
ÔòxAxB=$\frac{2£¨1-2k£©^{2}-6}{1+2{k}^{2}}$£¬xA+xB=-$\frac{4k£¨1-2k£©}{1+2{k}^{2}}$£¬
¡ßxA=2£¬¡àxB=$\frac{2£¨2{k}^{2}-2k-1£©}{1+2{k}^{2}}$£¬
¼´ÓÐ|AB|2=£¨1+k2£©|xA-xB|=£¨1+k2£©•$\frac{4k+4}{1+2{k}^{2}}$£¬
Ö±ÏßACµÄ·½³ÌΪy-1=-$\frac{1}{k}$£¨x-2£©£¬ÁªÁ¢Å×ÎïÏß·½³Ì£¬ÏûÈ¥y£¬µÃx2+$\frac{4}{k}$x-4-$\frac{8}{k}$=0£¬
¡àxAxC=-4-$\frac{8}{k}$£¬xA+xC=-$\frac{4}{k}$£¬
¡ßxA=2£¬¡àxC=-$\frac{2£¨k+2£©}{k}$£¬
¼´ÓÐ|AC|2=£¨1+$\frac{1}{{k}^{2}}$£©|xA-xC|=£¨1+$\frac{1}{{k}^{2}}$£©•$\frac{4k+4}{k}$£¬
ÔòÓÐm2=$\frac{|AB{|}^{2}}{|AC{|}^{2}}$=$\frac{4{k}^{2}}{1+2{k}^{2}}$=$\frac{4}{2+\frac{1}{{k}^{2}}}$£¼2£¬
¼´ÓÐ0£¼m£¼$\sqrt{2}$£®
ÔòmµÄÈ¡Öµ·¶Î§ÊÇ£¨0£¬$\sqrt{2}$£©£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍ½¹µã×ø±ê£¬Í¬Ê±¿¼²éÖ±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬Å×ÎïÏß·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨Àí£¬ÒÔ¼°ÏÒ³¤¹«Ê½£¬×¢Ò⻯¼òÕûÀí£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø