题目内容

已知向量
a
=(x2,x+1),
b
=(1-x,t),若函数f(x)=
a
b
在区间(-1,1)上是增函数,则实数t的取值范围是(  )
A.[5,+∞)B.(5,+∞)C.(-∞,5]D.(-∞,5)
依定义f(x)=x2(1-x)+t(x+1)=-x3+x2+tx+t,
则f′(x)=-3x2+2x+t.
若f(x)在(-1,1)上是增函数,
则在(-1,1)上f'(x)≥0恒成立.
∴f′(x)≥0?t≥3x2-2x,
在区间(-1,1)上恒成立,
考虑函数g(x)=3x2-2x,
由于g(x)的图象是对称轴为x=
1
3
,开口向上的抛物线,
故要使t≥3x2-2x在区间(-1,1)上恒成立?t≥g(-1),
即t≥5.
而当t≥5时,f′(x)在(-1,1)上满足f′(x)>0,
即f(x)在(-1,1)上是增函数;
故t的取值范围是t≥5.
故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网