题目内容

设定义在区间[x1,x2]上的函数y=f(x)的图象为C,M是C上的任意一点,O为坐标原点,设向
OA
=(x1,f(x1)),
OB
=(x2,  f(x2))
OM
=(x,y),当实数λ满足x=λ x1+(1-λ) x2时,记向量
ON
OA
+(1-λ)
OB
.定义“函数y=f(x)在区间[x1,x2]上可在标准k下线性近似”是指“|
MN
|≤
k恒成立”,其中k是一个确定的正数.
(1)设函数 f(x)=x2在区间[0,1]上可在标准k下线性近似,求k的取值范围;
(2)求证:函数g(x)=lnx在区间[em,em+1](m∈R)上可在标准k=
1
8
下线性近似.
(参考数据:e=2.718,ln(e-1)=0.541)
(1)由
ON
OA
+(1-λ)
OB
得到
BN
BA

所以B,N,A三点共线,(2分)
又由x=λx1+(1-λ)x2与向量
ON
OA
+(1-λ)
OB
,得N与M的横坐标相同.(4分)
对于[0,1]上的函数y=x2,A(0,0),B(1,1),
则有|
MN
|=x-x2=-(x-
1
2
)2+
1
4
,故|
MN
|∈[0,  
1
4
]

所以k的取值范围是[
1
4
,+∞)
.(6分)
(2)对于[em,em+1]上的函数y=lnx,
A(em,m),B(em+1,m+1),(8分)
则直线AB的方程y-m=
1
em+1-em
(x-em)
,(10分)
h(x)=lnx-m-
1
em+1-em
(x-em)
,其中x∈[em,em+1](m∈R),
于是h′(x)=
1
x
-
1
em+1-em
,(13分)
列表如下:
x em (em,em+1-em em+1-em (em+1-em,em+1 em+1
h'(x) + 0 -
h(x) 0 h(em+1-em 0
|
MN
|
=h(x),且在x=em+1-em处取得最大值,
h(em+1-em)=ln(e-1)-
e-2
e-1
0.123
1
8
,从而命题成立.(16分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网