题目内容

化简:(1)
1
tan 368°
+
2sin 2 550°•cos(-188°)
2cos 638°+cos 98°

(2)cos2θ+cos2(θ+
π
3
)-cos θcos(θ+
π
3
)
分析:(1)原式中的角度变形后,利用诱导公式化简,计算即可得到结果;
(2)原式前两项利用二倍角的余弦函数公式化简,第三项利用积化和差公式化简,整理即可得到结果.
解答:解:(1)原式=
1
tan8°
+
-2sin30°•cos8°
2cos82°-cos82°
=
cos8°
sin8°
+
-cos8°
sin8°
=0;
(2)原式=
1
2
(1+cos2θ)+
1
2
[1+cos(2θ+
3
)]-
1
2
[cos(2θ+
π
3
)+cos(-
π
3
)]
=
1
2
[
3
2
+cos2θ+cos(2θ+
3
)-cos(2θ+
π
3
)]
=
1
2
3
2
+cos2θ-
1
2
cos2θ-
3
2
sin2θ-
1
2
cos2θ+
3
2
sin2θ)
=
3
4
点评:此题考查了两角和与差的余弦函数公式,同角三角函数间基本关系的应用,以及诱导公式的作用,熟练掌握公式是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网