题目内容

(满分14分)已知二次函数f(x)的二次项系数为a,且不等式f(x)>-2x的解集为(1,3).
(1)若方程f(x)+6a=0有两个相等的根,求f(x)的解析式;
(2)若f(x)的最大值为正数,求实数a的取值范围.

解:本题主要考查二次函数、方程的根与系数关系,考查运用数学知识解决问题的能力.
(1)∵f(x)+2x>0的解集为(1,3).
f(x)+2xa(x-1)(x-3),且a<0,因而
f(x)=a(x-1)(x-3)-2xax2-(2+4a)x+3a. ①
由方程f(x)+6a=0,得ax2-(2+4a)x+9a=0.②
∵方程②有两个相等的根,∴Δ=[-(2+4a)]2-4a·9a=0,即5a2-4a-1=0.
解得a=1或a=-. 由于a<0,舍去a=1,将a=-代入①得
f(x)的解析式为f(x)=-x2x-.
(2)由f(x)=ax2-2(1+2a)x+3aa2
a<0,可得f(x)的最大值为-. 由
解得a<-2-或-2+<a<0.
故当f(x)的最大值为正数时,实数a的取值范围是(-∞,-2-)∪(-2+,0).

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网