题目内容
(13分)已知数列满足:其中,数列满足:
(1)求;
(2)求数列的通项公式;
(3)是否存在正数k,使得数列的每一项均为整数,如果不存在,说明理由,如果存在,求出所有的k.
解析:(1)经过计算可知:
.
求得.…………………………………………(4分)
(2)由条件可知:.…………①
类似地有:.…………②
①-②有:.
即:.
因此:
即:故
所以:.…………………………………………(8分)
(3)假设存在正数,使得数列的每一项均为整数.
则由(2)可知:…………③
由,及可知.
当时,为整数,利用,结合③式,反复递推,可知,,,,…均为整数.
当时,③变为………④
我们用数学归纳法证明为偶数,为整数
时,结论显然成立,假设时结论成立,这时为偶数,为整数,故为偶数,为整数,所以时,命题成立.
故数列是整数列.
综上所述,的取值集合是.………………………………………(13分)
练习册系列答案
相关题目