题目内容

在平面斜坐标系,点的斜坐标定义为:“若(其中分别为与斜坐标系的轴,轴同方向的单位向量),则点的坐标为”.若且动点满足,则点在斜坐标系中的轨迹方程为(   )

A.B.C.D.

D.

解析试题分析:设M(x,y),∵F1(-1,0),F2(1,0),
∴由定义知|MF1|=|(x+1)+y|,|MF2|=|(x-1)+y|,
,∴(x+1)2+y2+2(x+1)×y×=(x-1)2+y2+2(x-1)×y×
整理得x+y=0,故选D。
考点:本题主要考查轨迹方程的求法,平面向量的数量积及模的计算。
点评:小综合题,本题以平面向量为载体,重点考查轨迹方程的求法。本题解法可谓之“直接法”,即从动点满足的几何条件出发,直接得到方程。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网