题目内容
若,而a,b,c各不相等,求x+y+z的值.
【答案】分析:本题根据,设出=t,从而将x,y,z用a,b,c,t来表示即可
解答:解:设=t,
则有x=(a-b)t,y=(b-c)tz=(c-a)t
由此可得:x+y+z=(a-b)t+(b-c)t+(c-a)t=0.
点评:本题考查了换元的解题思想方法,属于基础题.
解答:解:设=t,
则有x=(a-b)t,y=(b-c)tz=(c-a)t
由此可得:x+y+z=(a-b)t+(b-c)t+(c-a)t=0.
点评:本题考查了换元的解题思想方法,属于基础题.
练习册系列答案
相关题目