题目内容
(福建卷理22)已知函数f(x)=ln(1+x)-x1
(Ⅰ)求f(x)的单调区间;
(Ⅱ)记f(x)在区间(n∈N*)上的最小值为bx令an=ln(1+n)-bx.
(Ⅲ)如果对一切n,不等式恒成立,求实数c的取值范围;
(Ⅳ)求证:
【标准答案】解法一:
(I)因为f(x)=ln(1+x)-x,所以函数定义域为(-1,+),且f〃(x)=-1=.
由f〃(x)>0得-1<x<0,f(x)的单调递增区间为(-1,0);
由f〃(x)<0得x>0,f(x)的单调递增区间为(0,+).
(II)因为f(x)在[0,n]上是减函数,所以bn=f(n)=ln(1+n)-n,
则an=ln(1+n)-bn=ln(1+n)-ln(1+n)+n=n.
(i)
>
又lim,
因此c<1,即实数c的取值范围是(-,1).
(II)由(i)知
N*)
解法二:(Ⅰ)同解法一.
(Ⅱ)因为f(x)在上是减函数,所以
则
(i)因为对n∈N*恒成立.所以对n∈N*恒成立.
则对n∈N*恒成立.
设 n∈N*,则c<g(n)对n∈N*恒成立.
考虑
因为=0,
所以内是减函数;则当n∈N*时,g(n)随n的增大而减小,
又因为=1.
所以对一切因此c≤1,即实数c的取值范围是(-∞,1].
(ⅱ) 由(ⅰ)知
下面用数学归纳法证明不等式
①当n=1时,左边=,右边=,左边<右边.不等式成立.
②假设当n=k时,不等式成立.即
当n=k+1时,
=
即n=k+1时,不等式成立
综合①、②得,不等式成立.
所以
即.
【试题解析】
【高考考点】本小题主要考查函数的单调性、最值、不等式、数列等基本知识,考查运用导数研究函数性质的方法,考查分析问题和解决问题的能力,满分14分.
【易错提醒】第一问中导数记不住公式