题目内容

(本题满分12分)
如图,在四棱锥中,底面的中点.

(Ⅰ)证明
(Ⅱ)证明平面

(Ⅰ)由线面垂直得线线垂直:因底面,所以平面.(Ⅱ)由线线垂直得线面垂直:易得的中点,.由(Ⅰ)知,,所以平面底面在底面内的射影是.得平面

解析试题分析:(Ⅰ)证明:在四棱锥中,因底面
平面,故
平面
平面
(Ⅱ)证明:由,可得
的中点,
由(Ⅰ)知,,且,所以平面
平面
底面在底面内的射影是
,综上得平面
考点:本题考查了空间中的线面关系
点评:对于立体几何问题的证明问题,要求我们熟练应用课本上的定理、性质、结论等,考查了学生的空间想象能力

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网