题目内容

设{an}是正数组成的数列,其前n项和为Sn,且对于所有的正整数n,有2
Sn
=an+1

(I)求a1,a2的值;
(II)求数列{an}的通项公式;
(III)令b1=1,b2k=a2k-1+(-1)k,b2k+1=a2k+3k(k=1,2,3,…),求数列{bn}的前2n+1项和T2n+1
分析:(I)由题设条件知当n=1时,(
a1
-1)2=0
,a1=1.当n=2时,
a2+1
=2
,a2=3.
(II)由2
Sn
=an+1
,知4Sn=(an+1)24Sn-1=(an-1+1)2,相减得:(an+an-1)(an-an-1-2)=0.由此可知an=2n-1.
(Ⅲ)T2n+1=b1+[a1+(-1)1]+(a2+31)+[a3+(-1)2]+(a4+32)++(a2n+3n)=1+S2n+(3+32++3n)+[(-1)1+(-1)2++(-1)n],由此能够求出其结果.
解答:解:(I)当n=1时,2
a1
=a1+1

(
a1
-1)2=0
,a1=1
当n=2时,2
1+a2
=a2+1

a2+1
=2
,a2=3.
(II)∵2
Sn
=an+1

∴4Sn=(an+1)24Sn-1=(an-1+1)2,相减得:(an+an-1)(an-an-1-2)=0
∵{an}是正数组成的数列,
∴an-an-1=2,∴an=2n-1.
(Ⅲ)T2n+1=b1+[a1+(-1)1]+(a2+31)+[a3+(-1)2]+(a4+32)++(a2n+3n
=1+S2n+(3+32++3n)+[(-1)1+(-1)2++(-1)n]
=1+(2n)2+
3(1-3n)
1-3
+
(-1)(1-(-1)n)
1-(-1)

=
3n+1-2+8n2+(-1)n
2
点评:本题考查数列的综合运算,解题时要注意计算能力的培养.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网