题目内容
设{an}是正数组成的数列,其前n项和为Sn,且对于所有的正整数n,有2Sn |
(I)求a1,a2的值;
(II)求数列{an}的通项公式;
(III)令b1=1,b2k=a2k-1+(-1)k,b2k+1=a2k+3k(k=1,2,3,…),求数列{bn}的前2n+1项和T2n+1.
分析:(I)由题设条件知当n=1时,(
-1)2=0,a1=1.当n=2时,
=2,a2=3.
(II)由2
=an+1,知4Sn=(an+1)24Sn-1=(an-1+1)2,相减得:(an+an-1)(an-an-1-2)=0.由此可知an=2n-1.
(Ⅲ)T2n+1=b1+[a1+(-1)1]+(a2+31)+[a3+(-1)2]+(a4+32)++(a2n+3n)=1+S2n+(3+32++3n)+[(-1)1+(-1)2++(-1)n],由此能够求出其结果.
a1 |
a2+1 |
(II)由2
Sn |
(Ⅲ)T2n+1=b1+[a1+(-1)1]+(a2+31)+[a3+(-1)2]+(a4+32)++(a2n+3n)=1+S2n+(3+32++3n)+[(-1)1+(-1)2++(-1)n],由此能够求出其结果.
解答:解:(I)当n=1时,2
=a1+1,
∴(
-1)2=0,a1=1
当n=2时,2
=a2+1,
∴
=2,a2=3.
(II)∵2
=an+1,
∴4Sn=(an+1)24Sn-1=(an-1+1)2,相减得:(an+an-1)(an-an-1-2)=0
∵{an}是正数组成的数列,
∴an-an-1=2,∴an=2n-1.
(Ⅲ)T2n+1=b1+[a1+(-1)1]+(a2+31)+[a3+(-1)2]+(a4+32)++(a2n+3n)
=1+S2n+(3+32++3n)+[(-1)1+(-1)2++(-1)n]
=1+(2n)2+
+
=
.
a1 |
∴(
a1 |
当n=2时,2
1+a2 |
∴
a2+1 |
(II)∵2
Sn |
∴4Sn=(an+1)24Sn-1=(an-1+1)2,相减得:(an+an-1)(an-an-1-2)=0
∵{an}是正数组成的数列,
∴an-an-1=2,∴an=2n-1.
(Ⅲ)T2n+1=b1+[a1+(-1)1]+(a2+31)+[a3+(-1)2]+(a4+32)++(a2n+3n)
=1+S2n+(3+32++3n)+[(-1)1+(-1)2++(-1)n]
=1+(2n)2+
3(1-3n) |
1-3 |
(-1)(1-(-1)n) |
1-(-1) |
=
3n+1-2+8n2+(-1)n |
2 |
点评:本题考查数列的综合运算,解题时要注意计算能力的培养.

练习册系列答案
相关题目