题目内容

(2011•顺义区一模)下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数为(  )
分析:由f(x)=x-1=
1
x
是奇函数,故排除A. 由f(x)=cosx 在(0,+∞)上没有单调性,故排除B. 由f(x)=log2|x|在区间(0,+∞)上是单调递增的函数,故排除D.
经检验只有C满足条件.
解答:解:由于函数f(x)=x-1=
1
x
 是奇函数,故排除A.
由于函数f(x)=cosx 在(0,+∞)上没有单调性,故排除B.
由于函数f(x)=(
1
2
)
|x|
 是偶函数,在区间(0,+∞)上f(x)=(
1
2
)
x
 单调递减,故C满足条件.
由于函数 f(x)=log2|x|在区间(0,+∞)上是单调递增的函数,故排除D.
故选C.
点评:本题主要考查函数的奇偶性、单调性的判断,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网