题目内容

已知数列{an}是等比数列,Sn为其前n项和.
(1)若S4,S10,S7成等差数列,证明a1,a7,a4也成等差数列;
(2)设S3=
3
2
S6=
21
16
,bn=λan-n2,若数列{bn}是单调递减数列,求实数λ的取值范围.
分析:(1)设数列{an}的公比为q,根据等差中项的性质可知2S10=S4+S7,代入等比数列求和公式整理得1+q3=2q6.进而根据等比数列的通项公式可推断a1+a4=2a7.进而证明原式.
(2)把等比数列的求和公式代入S3和S6,两式相除即可求得q,把q代入S3求得a1,进而可得数列{an}的通项公式,根据数列{bn}是单调递减数列可知bn+1<bn,把bn=λan-n2代入不等式,进而根据当n是奇数时,当n=1时取最大值;n是偶数时,当n=2时取最大值,进而得到λ的范围.
解答:解:(1)证明:设数列{an}的公比为q,
因为S4,S10,S7成等差数列,所以q≠1,且2S10=S4+S7
所以
2a1(1-q10)
1-q
=
a1(1-q4)
1-q
+
a1(1-q7)
1-q

因为1-q≠0,所以1+q3=2q6
所以a1+a1q3=2a1q6,即a1+a4=2a7
所以a1,a7,a4也成等差数列.
(2)因为S3=
3
2
S6=
21
16

所以
a1(1-q3)
1-q
=
3
2
,①
a1(1-q6)
1-q
=
21
16
,②
由②÷①,得1+q3=
7
8
,所以q=-
1
2
,代入①,得a1=2.
所以an=2•(-
1
2
)n-1

又因为bn=λan-n2,所以bn=2λ(-
1
2
)n-1-n2

由题意可知对任意n∈N*,数列{bn}单调递减,
所以bn+1<bn,即2λ(-
1
2
)n-(n+1)2
2λ(-
1
2
)n-1-n2

6λ(-
1
2
)n<2n+1
对任意n∈N*恒成立,
当n是奇数时,λ>-
(2n+1)2n
6
,当n=1时,-
(2n+1)2n
6
取得最大值-1,
所以λ>-1;
当n是偶数时,λ<
(2n+1)2n
6
,当n=2时,
(2n+1)2n
6
取得最小值
10
3

所以λ
10
3

综上可知,-1<λ<
10
3
,即实数λ的取值范围是(-1,
10
3
)
点评:本题主要考查等比数列的性质,考查了学生根据已知条件,分析和解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网