题目内容

已知tanα,tanβ为方程x2-3x-3=0两根.
(1)求tan(α+β)的值;
(2)求sin2(α+β)-3sin(2α+2β)-3cos2(α+β)的值.
分析:(1)由韦达定理知
tanα+tanβ=3
tanαtanβ=-3
,可求 tan(α+β)的值.
(2)利用同角三角函数的基本关系,把要求的式子用6tan(α+β)来表示,把(1)的结果代入运算.
解答:解:(1)由事达定理知
tanα+tanβ=3
tanαtanβ=-3
,又tan(α+β)=
tanα+tanβ
1-tanαtanβ
,∴tan(α+β)=
3
1+3
=
3
4

(2)原式=cos2(α+β)[tan2(α+β)-tan(α+β)-3]=
1
1+tan2(α+β)
[tan2(α+β)-
6tan(α+β)-3]
=
1
1+(
3
4
)
2
[(
3
4
)
2
-6×
3
4
-3]
=-
111
25
点评:本题考查一元二次方程根与系数的关系,两角和的正切公式,同角三角函数的基本关系的应用,式子的变形是解题的难点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网