ÌâÄ¿ÄÚÈÝ
Ò»×ßÀȹսÇϵĺá½ØÃæÈçͼËùʾ£¬ÒÑÖªÄÚ±ÚFGºÍÍâ±ÚBC¶¼Êǰ뾶Ϊ1mµÄËÄ·ÖÖ®Ò»Ô²»¡£¬AB£¬DC·Ö±ðÓëÔ²»¡BCÏàÇÐÓÚB¡¢CÁ½µã£¬EF¡ÎAB£¬GH¡ÎCD£¬ÇÒÁ½×éƽÐÐǽ±Ú¼äµÄ×ßÀÈ¿í¶È¶¼ÊÇ1m£®£¨1£©Èôˮƽ·ÅÖõÄľ°ôMNµÄÁ½¸ö¶ËµãM¡¢N·Ö±ðÔÚÍâ±ÚCDºÍABÉÏ£¬ÇÒľ°ôÓëÄÚ±ÚÔ²»¡ÏàÇÐÓÚµãP£®Éè¡ÏCMN=¦È£¨rad£©£¬ÊÔÓæȱíʾľ°ôMNºÍ³¤¶Èf£¨¦È£©£®
£¨2£©ÈôÒ»¸ùˮƽ·ÅÖõÄľ°ôÄÜͨ¹ý¸Ã×ßÀȹսǴ¦£¬Çóľ°ô³¤¶ÈµÄ×î´óÖµ£®
·ÖÎö£º£¨1£©Èçͼ£¬ÉèÔ²»¡FGËùÔÚµÄÔ²µÄÔ²ÐÄΪQ£¬¹ýQµã×÷CD´¹Ïߣ¬´¹×ãΪµãT£¬ÇÒ½»MN»òÆäÑÓ³¤ÏßÓëÓÚS£¬²¢Á¬½ÓPQ£¬ÔÙ¹ýNµã×÷TQµÄ´¹Ïߣ¬´¹×ãΪW£®ÔÚRt¡÷NWSÖÐÓÃNWºÍ¡ÏSNW±íʾ³öNS£¬ÔÚRt¡÷QPSÖÐÓÃPQºÍ¡ÏPQS±íʾ³öQS£¬È»ºó·Ö±ð¿´SÔÚÏ߶ÎTGÉϺÍÔÚÏ߶ÎGTµÄÑÓ³¤ÏßÉÏ·Ö±ð±íʾ³öTS=QT-QS£¬È»ºóÔÚRt¡÷STMÖбíʾ³öMS£¬ÀûÓÃMN=NS+MSÇóµÃMNµÄ±í´ïʽºÍf£¨¦È£©µÄ±í´ïʽ£®
£¨2£©Éè³ösin¦È+cos¦È=t£¬Ôòsin¦Ècos¦È¿ÉÓÃt±íʾ³ö£¬È»ºó¿ÉµÃf£¨¦È£©¹ØÓÚtµÄ±í´ïʽ£¬¶Ôº¯Êý½øÐÐÇóµ¼£¬¸ù¾ÝtµÄ·¶Î§Åжϳöµ¼º¯ÊýСÓÚ0Íƶϳöº¯ÊýΪ¼õº¯Êý£®½ø¶ø¸ù¾ÝtµÄ·¶Î§ÇóµÃº¯ÊýµÄ×îСֵ£®
£¨2£©Éè³ösin¦È+cos¦È=t£¬Ôòsin¦Ècos¦È¿ÉÓÃt±íʾ³ö£¬È»ºó¿ÉµÃf£¨¦È£©¹ØÓÚtµÄ±í´ïʽ£¬¶Ôº¯Êý½øÐÐÇóµ¼£¬¸ù¾ÝtµÄ·¶Î§Åжϳöµ¼º¯ÊýСÓÚ0Íƶϳöº¯ÊýΪ¼õº¯Êý£®½ø¶ø¸ù¾ÝtµÄ·¶Î§ÇóµÃº¯ÊýµÄ×îСֵ£®
½â´ð£º½â£º£¨1£©Èçͼ£¬ÉèÔ²»¡FGËùÔÚµÄÔ²µÄÔ²ÐÄΪQ£¬¹ýQµã×÷CD´¹Ïߣ¬´¹×ãΪµãT£¬ÇÒ½»MN»òÆäÑÓ³¤ÏßÓëÓÚS£¬²¢Á¬½ÓPQ£¬ÔÙ¹ýNµã×÷TQµÄ´¹Ïߣ¬´¹×ãΪW£®
ÔÚRt¡÷NWSÖУ¬ÒòΪNW=2£¬¡ÏSNW=¦È£¬
ËùÒÔNS=
£®
ÒòΪMNÓëÔ²»¡FGÇÐÓÚµãP£¬ËùÒÔPQ¡ÍMN£¬
ÔÚRt¡÷QPS£¬ÒòΪPQ=1£¬¡ÏPQS=¦È£¬
ËùÒÔQS=
£¬QT-QS=2-
£¬
¢ÙÈôMÔÚÏ߶ÎTDÉÏ£¬¼´SÔÚÏ߶ÎTGÉÏ£¬ÔòTS=QT-QS£¬
ÔÚRt¡÷STMÖУ¬MS=
=
£¬
Òò´ËMN=NS+MS=NS+
£®
¢ÚÈôMÔÚÏ߶ÎCTÉÏ£¬¼´ÈôSÔÚÏ߶ÎGTµÄÑÓ³¤ÏßÉÏ£¬ÔòTS=QS-QT£¬
ÔÚRt¡÷STMÖУ¬MS=
=
£¬
Òò´ËMN=NS-MS=NS-
=NS+
£®
f£¨¦È£©=MN=NS+
=
+(
-
)=
(0£¼¦È£¼
)£®
£¨2£©Éèsin¦È+cos¦È=t (1£¼t¡Ü
)£¬Ôòsin¦Ècos¦È=
£¬
Òò´Ëf(¦È)=g(t)=
£®ÒòΪg¡ä(t)=-
£¬ÓÖ1£¼t¡Ü
£¬ËùÒÔg¡ä£¨t£©£¼0ºã³ÉÁ¢£¬
Òò´Ëº¯Êýg(t)=
ÔÚt¡Ê(1£¬
]ÊǼõº¯Êý£¬ËùÒÔg(t)min=g(
)=4
-2£¬
¼´MNmin=4
-2£®
´ð£ºÒ»¸ùˮƽ·ÅÖõÄľ°ôÈôÄÜͨ¹ý¸Ã×ßÀȹսǴ¦£¬ÔòÆ䳤¶ÈµÄ×î´óֵΪ4
-2£®
ÔÚRt¡÷NWSÖУ¬ÒòΪNW=2£¬¡ÏSNW=¦È£¬
ËùÒÔNS=
2 |
cos¦È |
ÒòΪMNÓëÔ²»¡FGÇÐÓÚµãP£¬ËùÒÔPQ¡ÍMN£¬
ÔÚRt¡÷QPS£¬ÒòΪPQ=1£¬¡ÏPQS=¦È£¬
ËùÒÔQS=
1 |
cos¦È |
1 |
cos¦È |
¢ÙÈôMÔÚÏ߶ÎTDÉÏ£¬¼´SÔÚÏ߶ÎTGÉÏ£¬ÔòTS=QT-QS£¬
ÔÚRt¡÷STMÖУ¬MS=
TS |
sin¦È |
QT-QS |
sin¦È |
Òò´ËMN=NS+MS=NS+
QT-QS |
sin¦È |
¢ÚÈôMÔÚÏ߶ÎCTÉÏ£¬¼´ÈôSÔÚÏ߶ÎGTµÄÑÓ³¤ÏßÉÏ£¬ÔòTS=QS-QT£¬
ÔÚRt¡÷STMÖУ¬MS=
TS |
sin¦È |
QS-QT |
sin¦È |
Òò´ËMN=NS-MS=NS-
QS-QT |
sin¦È |
QT-QS |
sin¦È |
f£¨¦È£©=MN=NS+
QT-QS |
sin¦È |
2 |
cos¦È |
2 |
sin¦È |
1 |
sin¦Ècos¦È |
2(sin¦È+cos¦È)-1 |
sin¦Ècos¦È |
¦Ð |
2 |
£¨2£©Éèsin¦È+cos¦È=t (1£¼t¡Ü
2 |
t2-1 |
2 |
Òò´Ëf(¦È)=g(t)=
4t-2 |
t2-1 |
4(t2-t+1) |
(t2-1)2 |
2 |
Òò´Ëº¯Êýg(t)=
4t-2 |
t2-1 |
2 |
2 |
2 |
¼´MNmin=4
2 |
´ð£ºÒ»¸ùˮƽ·ÅÖõÄľ°ôÈôÄÜͨ¹ý¸Ã×ßÀȹսǴ¦£¬ÔòÆ䳤¶ÈµÄ×î´óֵΪ4
2 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˽âÈý½ÇÐεÄʵ¼ÊÓ¦Ó㮿¼²éÁËѧÉú·ÖÎöÎÊÌâºÍ½â¾öÎÊÌâµÄÄÜÁ¦£¬»ù±¾µÄÔËËãÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿