题目内容
【题目】如图所示,在三棱锥中,平面,,,、分别为线段、上的点,且,.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值.
【答案】(1)见解析;(2).
【解析】试题分析:(Ⅰ)由平面,证得,再由为等腰直角三角形,得到,即可利用线面垂直的判定定理,证得平面.
(Ⅱ) 由(Ⅰ)知,以为坐标原点,如图建立空间直角坐标系,求得平面的法向量为,又平面的法向量可取,利用向量的夹角公式,即可求解二面角的余弦值.
试题解析:
(Ⅰ)证明:由平面,平面,故
由,得为等腰直角三角形,故
又,故平面.
(Ⅱ) 由(Ⅰ)知,为等腰直角三角形,
过作垂直于,易知又已知,故
以为坐标原点,建立空间直角坐标系,则
则有,.
设平面的法向量为,则有
,可取;
因为平面,所以平面的法向量可取.
则.
而二面角为锐二面角,故其余弦值为.
练习册系列答案
相关题目
【题目】某产品按行业生产标准分成8个等级,等级系数X依次为1,2,…8,其中为标准,为标准. 已知甲厂执行标准生产该产品,产品的零售价为6元/件; 乙厂执行标准生产该产品,产品的零售价为元/件,假定甲, 乙两厂的产品都符合相应的执行标准.
(Ⅰ)已知甲厂产品的等级系数的概率分布列如下所示:
5 | 6 | 7 | 8 | |
0.4 | b | 0.1 |
且的数学期望, 求a,b的值;
(Ⅱ)为分析乙厂产品的等级系数,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:
用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数的数学期望;
(Ⅲ)在(Ⅰ),(Ⅱ)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.
注: ①产品的“性价比”=;②“性价比”大的产品更具可购买性.