题目内容

已知正四棱柱ABCD-A1B1C1D1中,AB=2,数学公式,E为CC1的中点,则直线AC1与平面BED的距离为


  1. A.
    2
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    1
D
分析:先利用线面平行的判定定理证明直线C1A∥平面BDE,再将线面距离转化为点面距离,最后利用等体积法求点面距离即可
解答:如图:连接AC,交BD于O,在三角形CC1A中,易证OE∥C1A,从而C1A∥平面BDE,
∴直线AC1与平面BED的距离即为点A到平面BED的距离,设为h,
在三棱锥E-ABD中,VE-ABD=S△ABD×EC=××2×2×=
在三棱锥A-BDE中,BD=2,BE=,DE=,∴S△EBD=×2×=2
∴VA-BDE=×S△EBD×h=×2×h=
∴h=1
故选 D
点评:本题主要考查了线面平行的判定,线面距离与点面距离的转化,三棱锥的体积计算方法,等体积法求点面距离的技巧,属基础题
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网