题目内容

已知平面上两定点M(0,-2)、N(0,2),P为一动点,满足
.
MP
-
.
MN
=|
.
PN
|-|
.
MN
|.
(I)求动点P的轨迹C的方程;
(II)若A、B是轨迹C上的两不同动点,且
.
AN
.
NB
.分别以A、B为切点作轨迹C的切
线,设其交点Q,证明
.
NQ
-
.
AB
为定值.
分析:(I)先设P(x,y),欲动点P的轨迹C的方程,即寻找x,y之间的关系,结合向量的坐标运算即可得到.
(II)先设出A,B两点的坐标,利用向量关系及向量运算法则,用A,B的坐标表示出
.
NQ
-
.
AB
,最后看其是不是定值即可.
解答:解:(I)设P(x,y).
由已知
MP
=(x,y+2),
MN
=(0,4),
PN
=(-x,2-y),
MP
MN
=4y+8.
|
PN
|•|
MN
|=4x2+(y-2)2(3分)
MP
MN
=|
PN
|•|
MN
|
∴4y+8=4x2+(y-2)2整理,得x2=8y
即动点P的轨迹C为抛物线,其方程为x2=8y.(6分)
(II)由已知N(0,2).
即得(-x1,2-y1)=λ(x2,y2-2)
-x1x2
2-y1=λ(y2-2)

设A(x1,y1),B(x2,y2).由
AN
NB

即得(-x1,2-y1)=λ(x2,y2-2),
∴-x1=λx2…(1),
2-y1=λ(y2-2)…(2)
将(1)式两边平方并把x12=8y1,x22=8y2代入得y1=λy2(3分)
解得 y1=2λ,y2=
2
λ

且有x1x2=-λx22=-8λy2=-16.(8分)
抛物线方程为 y=18x2,求导得y′=
1
4
x.
所以过抛物线上A、B两点的切线方程分别是 y=
1
4
x1(x-x1)+y1,y=
1
4
x2(x-x2)+y2
即y=
1
4
x1x-
1
8
x12,y=
1
4
x2x-
1
8
x22
解出两条切线的交点Q的坐标为 (
x1+x2
2
x1x2
8
)=(
x1+x2
2
,-2)(11分)
所以
NQ
AB
=(
x1+x2
2
,-4)•(x2-x1,y1-y2
=
1
2
(x22-x12)-4(
1
8
x22-
1
8
x12)=0
所以
.
NQ
.
AB
为定值,其值为0.(13分)
点评:求曲线的轨迹方程是解析几何的基本问题   求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网