题目内容

在△ABC中,a+b=1,A=60°,B=45°,求a,b.
分析:利用正弦定理列出关系式,将sinA与sinB的值代入得到a与b的关系式,与a+b=1联立即可求出a与b的值.
解答:解:∵A=60°,B=45°,
∴由正弦定理得
a
sinA
=
b
sinB
,得:
a
sin60°
=
b
sin45°
,即a=
6
2
b,
又∵a+b=1,
6
2
b+b=1,即b=
6
-2,
则a=3-
6
点评:此题考查了正弦定理,熟练掌握正弦定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网