题目内容
已知|
|=1,|
|=
,
⊥
,点R在△POQ内,且∠POR=30°,设
=m
+n
(m,n∈R),则
等于( )
OP |
OQ |
3 |
OP |
OQ |
OR |
OP |
OQ |
m |
n |
分析:由题意可得
•
=0,可得
•
=m•
2,故有 m=rcos30°.再由
•
=n•
2,可得3n=
rcos60°,从而求得
的值.
OQ |
OP |
OR |
OP |
OP |
OR |
OQ |
OQ |
3 |
m |
n |
解答:解:设|OR|=r,由于
=m
+n
,
⊥
,∴
•
=0,故
•
=m•
2,∴m=rcos30°.
又∵
•
=n•
2,∴
rcos60°=3n,故
=3,
故选B.

OR |
OP |
OQ |
OP |
OQ |
OQ |
OP |
OR |
OP |
OP |
又∵
OR |
OQ |
OQ |
3 |
m |
n |
故选B.

点评:本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的运算,属于中档题.

练习册系列答案
相关题目
已知
=(cosθ,sinθ),
=(1+sinθ,1+cosθ)(θ∈[0,π]),则|
|的取值范围是( )
OP |
OQ |
PQ |
A、[1,
| ||||
B、[
| ||||
C、[
| ||||
D、[
|