题目内容

设x=1与x=2是函数f(x)=alnx+bx2+x的两个极值点,(1)试确定常数a和b的值;(2)判断x=1,x=2是函数f(x)的极大值还是极小值,并说明理由.

解:(1)∵f(x)=alnx+bx2+x,∴f′(x)=+2bx+1.由极值点的必要条件可知:f′(1)=f′(2)=0,

∴a+2b+1=0且+4b+1=0,解方程组得a=,b=-.∴f(x)=lnx-x2+x.

(2)f′(x)=x-1-x+1.当x∈(0,1)时,f′(x)<0,当x∈(1,2)时,f′(x)>0,当x∈(2,+∞)时,f′(x)<0.

    故在x=1处函数f(x)取得极小值,在x=2处函数取得极大值ln2.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网