题目内容

(文)已知向量
a
b
满足
a
b
=0,|
a
|=1,|
b
|=2,则|2
a
-
b
|=
6
6
分析:由向量
a
b
满足
a
b
=0,|
a
|=1,|
b
|=2,知|2
a
-
b
|2=4
a
2+
b
2-4
a
b
=4
a
2+
b
2=4+2=6,由此能求出|2
a
-
b
|.
解答:解析:∵向量
a
b
满足
a
b
=0,|
a
|=1,|
b
|=2,
∴|2
a
-
b
|2=(2
a
-
b
2=4
a
2+
b
2-4
a
b
=4
a
2+
b
2=4+2=6,
故|2
a
-
b
|=
6

故答案为:
6
点评:本题考查平面向量的性质及其运算,是基础题,解题时要认真审题,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网