题目内容

设函数,其图象与轴交于两点,且x1x2
(1)求的取值范围;
(2)证明:为函数的导函数);
(3)设点C在函数的图象上,且△ABC为等腰直角三角形,记,求的值.

(1);(2)详见解析;(3) 

解析试题分析:(1)根据题意图象与轴交于两点,由零点的定义可得:函数的图象要与x轴有两个交点,而此函数的特征不难发现要对它进行求导,运用导数与函数的关系进行求函数的性质,即:,a的正负就决定着导数的取值情况,故要对a进行分类讨论:分两种情况,其中显然不成立,时转化为函数的最小值小于零,即可求出a的范围; (2)由图象与轴交于两点,结合零点的定义可得:整理可得:,观察其结构特征,可想到整体思想,即:,目标为:,运用整体代入化简可得:,转化为对函数进行研究,运用导数知识不难得到,即:,故而是单调增函数,由不等式知:,问题可得证; (3)由题意有,化简得,而在等腰三角形ABC中,显然只有C = 90°,这样可得,即,结合直角三角形斜边的中线性质,可知,所以,即,运用代数式知识处理可得: ,而,所以,即,所求得 
试题解析:(1)
,则,则函数是单调增函数,这与题设矛盾.         2分
所以,令,则
时,是单调减函数;时,是单调增函数;
于是当时,取得极小值.                                    4分
因为函数的图象与轴交于两点(x1x2),
所以,即
此时,存在
存在
又由上的单调性及曲线在R上不间断,可知为所求取值范围.   6分
(2)因为 两式相减得

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网