题目内容

已知向量
a
b
,满足
a
=(1,2),
b
=(-2,1).
(1)求向量
a
-
b
的坐标,以及向量
a
-
b
a
的夹角;
(2)若向量
a
-
b
k
a
+
b
垂直,求实数k的值.
分析:(1)求出 
a
 -
b
  的坐标,设
a
-
b
 与
a
的夹角为 θ,则由 cos<
a
-
b
a
>=
(
a
-
b
) •
a
|
a
-
b
|•|
a
|
 求出 θ  的值.
(2)根据题意,求出两个向量的差的坐标,利用向量垂直的充要条件:数量积为0列出方程,求出k的值.
解答:解:(1)
a
 -
b
=(3,1),设
a
-
b
 与
a
的夹角为 θ,
则 cos<
a
-
b
a
>=
(
a
-
b
) •
a
|
a
-
b
|•|
a
|
=
3•1+2
9+1
1+4
=
2
2

根据题意得 0≤θ≤π,∴θ=
π
4

(2):
a
 -
b
=(3,1),k
a
+
b
=(k-2,2k+1)

∵向量
a
-
b
k
a
+
b
垂直
∴3×(k-2)+2k+1=0
解得k=1.
点评:本题考查两个向量的数量积的定义,两个向量的数量积公式,两个向量坐标形式的运算,向量的模的定义和求法,函数的单调性的应用,准确运算是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网