题目内容
16.f(x)=$\frac{2}{3}$x3-x2+ax-1己知曲线存在两条斜率为3的切线,且切点的横坐标都大于零,则实数a的取值范围为( )A. | (3,+∞) | B. | (3,$\frac{7}{2}$) | C. | (-∞,$\frac{7}{2}$] | D. | (0,3) |
分析 求得f(x)的导数,由题意可得2x2-2x+a-3=0有两个不等的正根,运用判别式大于0,两根之和大于0,两根之积大于0,解不等式即可得到a的范围.
解答 解:f(x)=$\frac{2}{3}$x3-x2+ax-1的导数为f′(x)=2x2-2x+a,
由题意可得2x2-2x+a=3,即2x2-2x+a-3=0有两个不等的正根,
则△=4-8(a-3)>0,x1+x2=1>0,x1x2=$\frac{1}{2}$(a-3)>0,
解得3<a<$\frac{7}{2}$.
故选B.
点评 本题考查导数的几何意义,考查二次方程实根的分布,以及韦达定理的运用,考查运算能力,属于中档题.
练习册系列答案
相关题目
7.设f(x)是定义在R上的函数,若对任意的实数x,都有f(x+4)≤f(x)+4和f(x+2)≥f(x)+2且f(-1)=0,则f(2015)的值是( )
A. | 2014 | B. | 2015 | C. | 2016 | D. | 2017 |
1.在△ABC中,已知∠BCA=$\frac{π}{4}$,BC=$\sqrt{2}$,AC=3,则sin∠ABC=( )
A. | $\frac{\sqrt{10}}{10}$ | B. | $\frac{\sqrt{10}}{5}$ | C. | $\frac{3\sqrt{10}}{10}$ | D. | $\frac{\sqrt{5}}{5}$ |