题目内容
平面内到定点(1,0)和到定点(4,0)的距离的比为![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231527889414436/SYS201311012315278894144019_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231527889414436/SYS201311012315278894144019_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231527889414436/SYS201311012315278894144019_ST/2.png)
【答案】分析:设曲线C上的任意一点P(x,y),利用平面内到定点(1,0)和到定点(4,0)的距离的比为
,可得
,从而可求曲线C的方程;利用
,且
,可得
,
,从而可求直线l的斜率,设C(x,y),利用
,可求对应的点C的坐标为.
解答:解:设曲线C上的任意一点P(x,y),则
,
化简可得曲线C的方程为x2+y2=4.…(4分)
∵
,且![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231527889414436/SYS201311012315278894144019_DA/9.png)
∴
,![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231527889414436/SYS201311012315278894144019_DA/11.png)
∵![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231527889414436/SYS201311012315278894144019_DA/12.png)
∴
…(8分)
设C(x,y),由
,解得
或![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231527889414436/SYS201311012315278894144019_DA/16.png)
∴直线l的斜率为
,对应的点C的坐标为
或
.…(12分)
点评:本题考查轨迹方程的求法,考查向量知识的运用,考查直线的斜率,解题的关键是掌握轨迹方程的一般求法.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231527889414436/SYS201311012315278894144019_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231527889414436/SYS201311012315278894144019_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231527889414436/SYS201311012315278894144019_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231527889414436/SYS201311012315278894144019_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231527889414436/SYS201311012315278894144019_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231527889414436/SYS201311012315278894144019_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231527889414436/SYS201311012315278894144019_DA/6.png)
解答:解:设曲线C上的任意一点P(x,y),则
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231527889414436/SYS201311012315278894144019_DA/7.png)
化简可得曲线C的方程为x2+y2=4.…(4分)
∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231527889414436/SYS201311012315278894144019_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231527889414436/SYS201311012315278894144019_DA/9.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231527889414436/SYS201311012315278894144019_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231527889414436/SYS201311012315278894144019_DA/11.png)
∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231527889414436/SYS201311012315278894144019_DA/12.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231527889414436/SYS201311012315278894144019_DA/13.png)
设C(x,y),由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231527889414436/SYS201311012315278894144019_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231527889414436/SYS201311012315278894144019_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231527889414436/SYS201311012315278894144019_DA/16.png)
∴直线l的斜率为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231527889414436/SYS201311012315278894144019_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231527889414436/SYS201311012315278894144019_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231527889414436/SYS201311012315278894144019_DA/19.png)
点评:本题考查轨迹方程的求法,考查向量知识的运用,考查直线的斜率,解题的关键是掌握轨迹方程的一般求法.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目