题目内容
18.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(x,-4),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则x=6.分析 由题意可得2x+3×(-4)=0,从而解得.
解答 解:∵$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(x,-4),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,
∴2x+3×(-4)=0,
∴x=6;
故答案为:=6.
点评 本题考查了平面向量数量积的运算,属于基础题.
练习册系列答案
相关题目
8.设向量$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow{b}$=(1,x),记f(x)为向量$\overrightarrow{b}$在$\overrightarrow{a}$上投影的数量,已知x∈(-π,π),则f(x)为( )
A. | 既是奇函数又是偶函数 | B. | 偶函数,且有两个零点 | ||
C. | 奇函数,且有三个零点 | D. | 偶函数,且只有一个极值点 |
9.已知△ABC为钝角三角形,命题“p:对△ABC的任意两个内角α,β,都有cosα+cosβ>0”,下列结论正确的是( )
A. | ¬p:对△ABC的任意两个内角α,β,都有cosα+cosβ≤0:假命题 | |
B. | ¬p:对△ABC中存在两个内角α,β,都有cosα+cosβ≤0:真命题 | |
C. | ¬p:对△ABC的任意两个内角α,β,都有cosα+cosβ≤0:真命题 | |
D. | ¬p:对△ABC中存在两个内角α,β,都有cosα+cosβ≤0:假命题 |
3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,(a>b>0),A1,A2是双曲线实轴的两个端点,MN是垂直于实轴所在直线的弦的两个端点,则A1M与A2N交点的轨迹方程是( )
A. | $\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1 | B. | $\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1 | C. | $\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1 | D. | $\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1 |