题目内容

设函数f(x)=cosωx(
3
sinωx+cosωx),其中0<ω<2
.(I)若f(x)的周期为π,当-
π
6
≤x≤
π
3
时,求f(x)
的值域;(II)若函数f(x)的图象的一条对称轴为x=
π
3
,求ω
的值.
分析:(I)先利用二倍角公式及辅助角公式把不同名的三角函数化简为只含一个角的三角函数的关系,根据周期公式可求ω,结合正弦函数的性质可求函数的值域
(II)采用整体思想求解,由函数的对称轴为
π
3
可知,2ω×
π
3
+
π
6
=kπ+
π
2
,K∈Z
,由ω的范围解出k的范围,结合已知k∈Z可求k及ω的值
解答:解:(I)f(x)=
3
sin ωxcosωx+cos2ωx
=sin(2ωx+
π
6
)+
1
2

∵T=π,ω>0∴
∴ω=1
-
π
6
≤x≤
π
3
2x+
π
6
∈[ -
π
6
6
]
时,sin(2x+
π
6
)∈[-
1
2
,1]

f(x)∈[0,
3
2
]
∴f(x)的值域为[0,
3
2
]

(II)f(x)=sin(2ωx+
π
6
)+
1
2
的对称轴为x=
π
3

2ω×
π
3
+
π
6
=kπ+
π
2
,K∈Z
ω=
3K+1
2

∵0<ω<2∴-
1
3
<K<1
       k=0,ω=
1
2
点评:三角函数的图象与位置特征要准确掌握,如对称轴经过函数图象的最高点(或最低点),对称中心是函数图象与x轴的交点,函数的其他特征量:函数的单调区间、函数的最值的取得条件常采用整体思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网