题目内容
命题甲:集合M={x|kx2-2kx+1=0}为空集;命题乙:关于x的不等式x2+(k-1)x+4>0的解集为R.若命题甲、乙中有且只有一个是真命题,则实数k的取值范围是______.
∵集合M={x|kx2-2kx+1=0}为空集,
当k≠0时,△=(-2k)2-4k<0,解得0<k<4,
当k=0时,方程变为1=0,无解,满足题意,
故可得0≤k<4;
又∵关于x的不等式x2+(k-1)x+4>0的解集为R,
∴△′=(k-1)2-4×4<0,解得-3<k<5,
当甲命题为真,乙命题为假时,可得
[0,4)∩{(-∞,-3]∪[5,+∞)}=∅,
当甲命题为假,乙命题为真时,可得
{(-∞,0)∪[4,+∞)}∩(-3,5)=(-3,0)∪[1,5),
故答案为:(-3,0)∪[1,5)
当k≠0时,△=(-2k)2-4k<0,解得0<k<4,
当k=0时,方程变为1=0,无解,满足题意,
故可得0≤k<4;
又∵关于x的不等式x2+(k-1)x+4>0的解集为R,
∴△′=(k-1)2-4×4<0,解得-3<k<5,
当甲命题为真,乙命题为假时,可得
[0,4)∩{(-∞,-3]∪[5,+∞)}=∅,
当甲命题为假,乙命题为真时,可得
{(-∞,0)∪[4,+∞)}∩(-3,5)=(-3,0)∪[1,5),
故答案为:(-3,0)∪[1,5)
练习册系列答案
相关题目