题目内容
已知正数列{an}的前n项和为Sn,且有Sn=
(an+1)2,数列{bn}是首项为1,公比为
的等比数列.
(1)求数列{an}、{bn}的通项公式;
(2)若c=anbn,求:数列{cn}的前n项和Tn;
(3)求证:
+
+
+…+
<
.
1 |
4 |
1 |
2 |
(1)求数列{an}、{bn}的通项公式;
(2)若c=anbn,求:数列{cn}的前n项和Tn;
(3)求证:
1 |
S1 |
1 |
S2 |
1 |
S3 |
1 |
Sn |
5 |
3 |
分析:(1)利用an=
即可得出an;利用等比数列的通项公式即可得出bn;
(2)利用“错位相减法”即可得出;
(3)利用“放缩法”和“裂项求和”即可得出.
|
(2)利用“错位相减法”即可得出;
(3)利用“放缩法”和“裂项求和”即可得出.
解答:解:(1)由Sn=
(an+1)2,
当n=1时,a1=
(a1+1)2,∴a1=1,
当n≥2时,Sn-1=
(an-1+1)2,
∴an=Sn-Sn-1=
(
-
+2an-2an-1),
即(an+an+1)(an-an-1-2)=0,∵an>0,
∴数列{an}是a1=1,d=2的等差数列
∴an=a1+(n-1)d=2n-1.
∵数列{bn}是首项为1,公比为
的等比数列.
∴bn=b1qn-1=1×(
)n-1=(
)n-1.
(2)cn=anbn=
,Tn=c1+c2+…+cn
Tn=1+
+
+…+
,①
Tn=
+
+…+
+
,②
①-②得
Tn=1+1+
+
+…+
-
=
-1-
=3-
-
,
∴Tn=6-
(3)∵Sn=
(an+1)2=
(2n-1+1)2=n2,
当n≥2,
=
<
=
(
-
),
∴
+
+…+
<1+
+
[(
-
)+(
-
)+…+(
-
)+(
-
)]
=1+
+
(
+
-
-
)<1+
+
(
+
)=1+
+
+
=
.
1 |
4 |
当n=1时,a1=
1 |
4 |
当n≥2时,Sn-1=
1 |
4 |
∴an=Sn-Sn-1=
1 |
4 |
a | 2 n |
a | 2 n-1 |
即(an+an+1)(an-an-1-2)=0,∵an>0,
∴数列{an}是a1=1,d=2的等差数列
∴an=a1+(n-1)d=2n-1.
∵数列{bn}是首项为1,公比为
1 |
2 |
∴bn=b1qn-1=1×(
1 |
2 |
1 |
2 |
(2)cn=anbn=
2n-1 |
2n-1 |
Tn=1+
3 |
2 |
5 |
22 |
2n-1 |
2n-1 |
1 |
2 |
1 |
2 |
3 |
22 |
2n-3 |
2n-1 |
2n-1 |
2n |
①-②得
1 |
2 |
1 |
2 |
1 |
22 |
1 |
2n-2 |
2n-1 |
2n |
2(1-(
| ||
1-
|
2n-1 |
2n |
1 |
2n-2 |
2n-1 |
2n |
∴Tn=6-
2n+3 |
2n-1 |
(3)∵Sn=
1 |
4 |
1 |
4 |
当n≥2,
1 |
Sn |
1 |
n2 |
1 |
n2-1 |
1 |
2 |
1 |
n-1 |
1 |
n+1 |
∴
1 |
S1 |
1 |
S2 |
1 |
Sn |
1 |
22 |
1 |
2 |
1 |
2 |
1 |
4 |
1 |
3 |
1 |
5 |
1 |
n-2 |
1 |
n |
1 |
n-1 |
1 |
n+1 |
=1+
1 |
4 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
1 |
4 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
4 |
1 |
4 |
1 |
6 |
5 |
3 |
点评:熟练掌握an=
、等比数列的通项公式、“错位相减法”、“放缩法”和“裂项求和”等是 解题的 关键.
|

练习册系列答案
相关题目