题目内容

已知tanα,tanβ是方程x2+3
3
x+4=0的两个根,且-
π
2
<α<
π
2
,-
π
2
<β<
π
2
,则α+β=(  )
A、
π
3
B、-
2
3
π
C、
π
3
或-
2
3
π
D、-
π
3
2
3
π
分析:先根据韦达定理求得tanα•tnaβ和tanα+tanβ的值,进而利用正切的两角和公式求得tan(α+β)的值,根据tanα•tnaβ>0,tanα+tanβ<0推断出tanα<0,tanβ<0,进而根据已知的α,β的范围确定α+β的范围,进而求得α+β的值.
解答:解:依题意可知tanα+tanβ=-3
3
,tanα•tnaβ=4
∴tan(α+β)=
tanα+tanβ
1-tanαtanβ
=
3

∵tanα•tnaβ>0,tanα+tanβ<0
∴tanα<0,tanβ<0
∵-
π
2
<α<
π
2
,-
π
2
<β<
π
2

∴-π<α+β<0
∴α+β=-
3

故选B
点评:本题主要考查了两角和与差的正切函数的化简求值.考查了基础知识的运用.属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网