题目内容

已知直线P1P2的斜率为k(k≠0),P1、P2的坐标分别为(x1y1)、(x2y2),求证:|P1P2|=
1+k2
|x2-x1|
=
1+
1
k2
|y2-y1|
分析:由题意得直线的斜率k=
y2-y1
x2-x1
,再由两点间的距离公式可得 |P1P2|=
(x2-x1)2+(y2-y1)2
=
1+(
y2-y1
x2-x1
)
2
|x2-x1|
,将斜率k代入即可得证.
解答:证明:∵直线P1P2的斜率为k(k≠0),P1、P2的坐标分别为(x1 ,y1)、(x2,y2),则 k=
y2-y1
x2-x1

|P1P2|=
(x2-x1)2+(y2-y1)2
=
1+(
y2-y1
x2-x1
)
2
|x2-x1|
=
1+k2
|x2-x1|

|P1P2|=
(x2-x1)2+(y2-y1)2
=
1+(
x2-x1
y2-y1
)
2
|y2-y1|
=
1+
1
k2
|y2-y1|

故|P1P2|=
1+k2
|x2-x1|
=
1+
1
k2
|y2-y1|
 成立.
点评:本题考查直线的斜率公式,两点间距离公式的应用,式子变形是解题的关键和难点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网