题目内容
平面α的一条斜线l与平面α交于点P,Q是l上一定点,过点Q的动直线m与l垂直,那么m与平面α交点的轨迹是( )A.直线
B.圆
C.椭圆
D.抛物线
【答案】分析:本题考查的知识点是空间中直线与平面之间的位置关系及公理3,则过点Q的动直线m与l垂直,则动直线m的轨迹是一个过Q点与直线l垂直的平面β,又由l是平面α的一条斜线,则β与α不平行,根据公理3,我们易得两个平面相交的交线为一条直线,即为m与平面α交点的轨迹.
解答:解:满足过点Q与l垂直的动直线m的轨迹为过点Q与m垂直的平面β,
显然两平面α与β的相交于一条直线
故选A
点评:要判断空间中直线与平面的位置关系,有良好的空间想像能力,熟练掌握空间中直线与直线、直线与平面、平面与平面平行或垂直的判定定理及性质定理,并能利用教室、三棱锥、长方体等实例举出满足条件的例子或反例是解决问题的重要条件.
解答:解:满足过点Q与l垂直的动直线m的轨迹为过点Q与m垂直的平面β,
显然两平面α与β的相交于一条直线
故选A
点评:要判断空间中直线与平面的位置关系,有良好的空间想像能力,熟练掌握空间中直线与直线、直线与平面、平面与平面平行或垂直的判定定理及性质定理,并能利用教室、三棱锥、长方体等实例举出满足条件的例子或反例是解决问题的重要条件.
练习册系列答案
相关题目