题目内容

16.设Sn为数列{an}的前n项和,若Sn=5an-1,则an=$\frac{1}{4}×(\frac{5}{4})^{n-1}$.

分析 由已知的数列递推式求出首项,再由数列递推式得到数列{an}是以$\frac{1}{4}$为首项,以$\frac{5}{4}$为公比的等比数列.则an可求.

解答 解:由Sn=5an-1,取n=1,得a1=5a1-1,∴${a}_{1}=\frac{1}{4}$;
当n≥2时,an=Sn-Sn-1=5an-1-5an-1+1,
∴4an=5an-1,即$\frac{{a}_{n}}{{a}_{n-1}}=\frac{5}{4}$(n≥2).
则数列{an}是以$\frac{1}{4}$为首项,以$\frac{5}{4}$为公比的等比数列.
∴${a}_{n}=\frac{1}{4}×(\frac{5}{4})^{n-1}$.
故答案为:$\frac{1}{4}×(\frac{5}{4})^{n-1}$.

点评 本题考查了递推关系的应用、等比数列的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网