题目内容

若函数在给定区间M上存在正数t,使得对于任意,有,且,则称为M上的t级类增函数。给出4个命题

①函数上的3级类增函数

②函数上的1级类增函数

③若函数上的级类增函数,则实数a的最小值为2

④设是定义在上的函数,且满足:1.对任意,恒有;2.对任意,恒有;3. 对任意,若函数上的t级类增函数,则实数t的取值范围为

以上命题中为真命题的是     

 

【答案】

①④

【解析】

试题分析:因为不成立,故A不正确;,∵f(x)=|log2(x-1)|,,∴f(x+1)-f(x)=|log2x|-|log2(x-1)|0在(1,+∞)上不成立,故B不正确;∵函数f(x)=sinx+ax为[ ,+∞)上的级类增函数,

∴sin(x+)+a(x+)≥sinx+ax,∴sinxcos+cosxsin+ax+a≥sinx+ax,∴ cosx+a≥

sinx,当x=时,a≥,a≥,∴实数a的最小值不为2,故C不正确;∵f(x)=x2-3x为[1,+∞)上的t级类增函数,∴(x+t)2-3(x+t)≥x2-3x,∴2tx+t2-3t≥0, t≥3-2x∈[1,+∞),故D成立.故答案①④

考点:命题的真假

点评:本题考查命题的真假判断,是中档题.解题时要认真审题,仔细解答,注意合理地进行等价转化.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网