题目内容
已知函数.(I)若p=2,求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数f(x)在其定义域内为增函数,求正实数p的取值范围;
(Ⅲ)设函数,若在[1,e]上至少存在一点x,使得f(x)>g(x)成立,求实数p的取值范围.
【答案】分析:(I)求出函数在x=1处的值,求出导函数,求出导函数在x=1处的值即切线的斜率,利用点斜式求出切线的方程.
(II)求出函数的导函数,令导函数大于等于0恒成立,构造函数,求出二次函数的对称轴,求出二次函数的最小值,令最小值大于等于0,求出p的范围.
(III)通过g(x)的单调性,求出g(x)的最小值,通过对p的讨论,求出f(x)的最大值,令最大值大于等于g(x)的最小值求出p的范围.
解答:解:(I)当p=2时,函数,f(1)=2-2-2ln1=0.,
曲线f(x)在点(1,f(1))处的切线的斜率为f'(1)=2+2-2=2.
从而曲线f(x)在点(1,f(1))处的切线方程为y-0=2(x-1)
即y=2x-2.
(II).
令h(x)=px2-2x+p,
要使f(x)在定义域(0,+∞)内是增函数,只需h(x)≥0在(0,+∞)内恒成立.
由题意p>0,h(x)=px2-2x+p的图象为开口向上的抛物线,对称轴方程为,
∴,只需,
即p≥1时,h(x)≥0,f'(x)≥0
∴f(x)在(0,+∞)内为增函数,正实数p的取值范围是[1,+∞).
(III)∵在[1,e]上是减函数,
∴x=e时,g(x)min=2;x=1时,g(x)max=2e,
即g(x)∈[2,2e],
1当p<02时,h(x)=px2-2x+p3,其图象为开口向下的抛物线,对称轴4在y5轴的左侧,且h(0)<0,
所以f(x)在x∈[1,e]9内是减函数.
当p=0时,h(x)=-2x,因为x∈[1,e],所以h(x)<0,
,此时,f(x)在x∈[1,e]内是减函数.
∴当p≤0时,f(x)在[1,e]上单调递减⇒f(x)max=f(1)=0<2,不合题意; (
当0<p<1时,由12,所以.
又由(2)知当p=1时,f(x)在[1,e]上是增函数,
∴,不合题意;
14当p≥115时,由(2)知f(x)16在[1,e]17上是增函数,f(1)=0<218,又g(x)19在[1,e]20上是减函数,
故只需f(x)max>g(x)min,x∈[1,e],而,g(x)min=2,即,解得
综上所述,实数p的取值范围是.
点评:解决曲线的切线问题,常利用导数在切点处的值为切线的斜率求出切线方程;解决函数单调性已知求参数范围问题,常令导函数大于等于0(小于等于0)恒成立,求出参数的范围.
(II)求出函数的导函数,令导函数大于等于0恒成立,构造函数,求出二次函数的对称轴,求出二次函数的最小值,令最小值大于等于0,求出p的范围.
(III)通过g(x)的单调性,求出g(x)的最小值,通过对p的讨论,求出f(x)的最大值,令最大值大于等于g(x)的最小值求出p的范围.
解答:解:(I)当p=2时,函数,f(1)=2-2-2ln1=0.,
曲线f(x)在点(1,f(1))处的切线的斜率为f'(1)=2+2-2=2.
从而曲线f(x)在点(1,f(1))处的切线方程为y-0=2(x-1)
即y=2x-2.
(II).
令h(x)=px2-2x+p,
要使f(x)在定义域(0,+∞)内是增函数,只需h(x)≥0在(0,+∞)内恒成立.
由题意p>0,h(x)=px2-2x+p的图象为开口向上的抛物线,对称轴方程为,
∴,只需,
即p≥1时,h(x)≥0,f'(x)≥0
∴f(x)在(0,+∞)内为增函数,正实数p的取值范围是[1,+∞).
(III)∵在[1,e]上是减函数,
∴x=e时,g(x)min=2;x=1时,g(x)max=2e,
即g(x)∈[2,2e],
1当p<02时,h(x)=px2-2x+p3,其图象为开口向下的抛物线,对称轴4在y5轴的左侧,且h(0)<0,
所以f(x)在x∈[1,e]9内是减函数.
当p=0时,h(x)=-2x,因为x∈[1,e],所以h(x)<0,
,此时,f(x)在x∈[1,e]内是减函数.
∴当p≤0时,f(x)在[1,e]上单调递减⇒f(x)max=f(1)=0<2,不合题意; (
当0<p<1时,由12,所以.
又由(2)知当p=1时,f(x)在[1,e]上是增函数,
∴,不合题意;
14当p≥115时,由(2)知f(x)16在[1,e]17上是增函数,f(1)=0<218,又g(x)19在[1,e]20上是减函数,
故只需f(x)max>g(x)min,x∈[1,e],而,g(x)min=2,即,解得
综上所述,实数p的取值范围是.
点评:解决曲线的切线问题,常利用导数在切点处的值为切线的斜率求出切线方程;解决函数单调性已知求参数范围问题,常令导函数大于等于0(小于等于0)恒成立,求出参数的范围.
练习册系列答案
相关题目